APG777, a high-affinity humanized IgG1 mAb targeting IL-13, demonstrates prolonged half-life in non-human primates

Materials and methods

intravenously (IV) or subcutaneously (SC)

Maximum observed serum concentration (C

- Volume of distribution at steady-state (V_{st}).

- Absolute subcutaneous bioavailability (F)

- Time to maximum observed serum concentration (T_____)

Pharmacokinetic parameters included

- Clearance (CI).

- Half-life (t_{1/2})

168, 336, 504, 674, 840, 1334, 1680, and 2160 hours post-dose.

Eric Zhu¹, Jason Oh¹, Carl Dambkowski², and Hussam Shaheen¹

¹Paragon Therapeutics, Inc. Waltham, MA, USA; ²Apogee Therapeutics, Inc. Waltham, MA, USA

Introduction

- Interleukin-13 (IL-13) is a T helper type 2 (Th2) cytokine that plays a key role in the pathogenesis of atopic dermatitis, asthma, and other inflammatory and immunologic conditions.1-3
- APG777 is a humanized IgG1 monoclonal antibody (mAb) that is engineered to have high affinity for IL-13 and which blocks the heterodimerization of the signaling complex of IL-13/IL-13R α 1/IL-4R α and interrupts downstream inflammatory signaling (Figure 1).
- APG777 contains a triple amino acid modification, typically M252Y/S254T/T256E (referred to as a 'YTE' modification) in the fragment crystallizable (Fc) region designed to extend its half-life in nonhuman primates (NHPs) and humans by increasing binding to the neonatal Fc receptor (FcRn) under acidic pH conditions (Figure 2).4,5
- APG777 also contains two additional amino acid modifications, L235A/L236A (referred to as 'LALA' modification) in the Fc region, designed to ablate Fc and complement effector functions.
- Here we present the pharmacokinetics of APG777 and lebrikizumab following intravenous and subcutaneous dosing in cynomolgus monkeys

Figure 1: APG777 is designed to bind IL-13, thereby disrupting Th2 signaling by preventing formation of the IL-13Ra1/IL-4Ra heterodimer

Results

APG777 exhibited an average t_{1/2} of 27.6 days and Cl rate of 1.45 (mL/day/kg) in NHPs (Figure 3).

- Area under the serum concentration versus time curve from time 0 extrapolated to infinity (AUC_{0.inf})

- Lebrikizumab exhibited an average t_{1/2} of 18.0 days and Cl rate of 2.93 (mL/day/kg) in NHPs (Figure 3).
- The V_{er} was observed to be 55.65 (mL/kg). APG777 was well-absorbed, with subcutaneous F determined to be 81.22% (Table 1).

• The pharmacokinetics of APG777 and a monoclonal antibody expressed based on the published sequence of

lebrikizumab were studied in female cynomolgus monkeys following a single bolus dose of 3 mg/kg, given either

Blood samples were collected serially starting with a sample pre-dose and subsequently at 0.167, 1, 4, 8, 24, 48, 96,

• The V_{ss} was observed to be 52.10 (mL/kg). Lebrikizumab was well-absorbed, with subcutaneous F determined to be 75.70% (Table 1)

Figure 3: Serum concentration-time curves for APG777 and lebrikizumab in NHPs

Values represent mean ± SEM serum concentration vs. time. IV, intravenous; SC, subcutaneous.

cynomolgus monkeys

*Monoclonal antibody expressed based on the published sequence of lebrikizumab; †Both Cl and V., of subcutaneous administration were dose normalized using the subcutaneous bioavailability (F) indicated in the table; [‡]F (%) was calculated by dividing the mean dose-normalized AUC_{nint} following subcutaneous administration by the mean dose-normalized $AUC_{0:inf}$ following IV administration. $AUC_{0:inf}$, area under the serum concentration versus time curve from time 0 extrapolated to infinity; Cl, clearance; C_{max}, maximum observed serum concentration; F, bioavailability; IV, intravenous; PK, pharmacokinetic; SC, subcutaneous; SE, standard error; t_{1/2}, half-life; T_{max}, time to maximum observed serum concentration; V_{ss}, volume of distribution at steady-state.

Conclusions

- and other II-13-driven diseases
- initiated in Australia.

References

- 1. Bieber T. Allergy 2020;75:54-62.

- 5. Zhu E, et al. EADV 2023 (poster #P0437)

Acknowledgements

Editorial and layout assistance for this poster was provided by Miller Medical Communications Ltd. This work was funded by the study sponsor (Apogee Therapeutics, Inc.).

#P0435

APG777		Lebrikizumab*	
IV	sc	IV	sc
0	3.33 (0.67)	0	2.33 (0.89)
1.03 x 10⁵	4.13 × 10 ⁴	9.68 × 10 ⁴	4.25 × 10⁴
(4.50 x 10³)	(1.65 × 10 ³)	(4.65 × 10 ³)	(1.16 × 10³)
5.05 x 10 ⁷	4.10 x 10 ⁷	2.66 x 10 ⁷	2.01 × 10 ⁷
(1.99 x 10°)	(5.39 x 10 ⁶)	(4.76 x 10 ⁶)	(4.18 × 10 ⁶)
1.43	1.48	2.93	2.93
(0.05)	(0.20)	(0.61)	(0.53)
54.06	57.24	59.26	44.95
(1.18)	(1.92)	(5.79)	(4.01)
N/A	81.22 (13.70)	N/A	75.70 (27.40)
28.2	27.0	18.1	13.5
(1.16)	(2.45)	(3.87)	(2.66)

Table 1: Pharmacokinetics of APG777 and lebrikizumab following a single bolus IV or SC dose in

• APG777 demonstrated an increase in t_{1/2} and exposure and reduced clearance compared with a monoclonal antibody based on the published sequence of lebrikizumab in NHPs.

• APG777's prolonged t_{1/2} may enable less frequent dosing compared with currently available treatments, which could reduce injection burden and increase compliance for patients living with atopic dermatitis

• These data support the initiation of a Phase 1 study of APG777 in healthy volunteers, which has been

2. Hershev GK. I Alleray Clin Immunol 2003:111:677-90.

3. Gandhi NA, et al. Expert Rev Clin Immunol 2017;13:425-37

4. Dall'Acqua, et al. | Biol Chem 2006;281:23514-24.

