

APG777 PHASE 1 DATA

March 2024

Disclaimers and Forward-looking statements

This presentation contains certain "forward-looking statements" within the meaning of applicable securities laws. Other than statements of historical facts, all statements included in this presentation are forward-looking statements, including statements about our plans, objectives, goals, strategies and future events, the efficacy, safety, tolerability, PK and PD profile of APG777, the potential dosing regimen of APG777, the potential superiority of APG777 compared to current therapies, our expectations regarding plans for our current and future product candidates and programs, our plans for our current and future clinical trials, our plans for clinical trial design, the anticipated timing of the initiation of and results from our clinical trials, the potential programs, our expected timing for future pipeline updates and estimates of market size. In some cases, you can identify forward-looking statements by terms such as "anticipate," "believe," "can," "could," "design," "estimate," "expect," "intend," "likely," "may," "might," "plan," "potential," "predict," "suggest," "target," "will," "would," or the negative of these terms, and similar expressions intended to identify forward-looking statements. The forward-looking statements are based on our beliefs, assumptions and expectations of future performance, taking into account the information currently available to us. These statements are only predictions based upon our current expectations and projections about future events. Forward-looking statements are subject to known and unknown risks, uncertainties and other factors that may cause our actual results, level of activity, performance or achievements to be materially different from those expressed or annual Report on Form 10-K for the year ended December 31, 2023, filed with the SEC on March 5, 2024, and subsequent disclosure documents we may file with the U.S. Securities and Exchange Commission. Although we have attempted to identify important factors that could cause actual results to differ materially

This presentation concerns drug candidates that are under clinical investigation, and which have not yet been approved by the U.S. Food and Drug Administration. These are currently limited by federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

The assumptions used in the preparation of this presentation, although considered reasonable by us at the time of preparation, may prove to be incorrect. You are cautioned that the information is based on assumptions as to many factors and that actual results may vary from the results projected and such variations may be material. Accordingly, you should not place undue reliance on any forward-looking statements contained herein or rely on them as predictions of future events. All forward-looking statements in this presentation apply only as of the date made and are expressly qualified by the cautionary statements included in this presentation. We do not undertake to update any forward-looking statements, except in accordance with applicable securities laws.

The trademarks, trade names and service marks appearing in this presentation are the property of their respective owners. Certain information contained in this presentation relate to or are based on studies, publications and other data obtained from third-party sources as well as our own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources.

Agenda

Introduction & Executive Summary

Michael Henderson, MD Chief Executive Officer

APG777 Phase 1 Interim Results

Carl Dambkowski, MD Chief Medical Officer

APG777 Phase 2 Trial in Atopic Dermatitis

Kristine Nograles, MD SVP, Clinical Development

Building a Leading I&I Company

Michael Henderson, MD Chief Executive Officer

Analyst Q&A

Michael Henderson, MD, CEO Carl Dambkowski, MD, CMO Jane Pritchett Henderson, CFO

Apogee plans to reshape the current standard of care for inflammatory and immune diseases

Focus on developing differentiated biologics with known biologic drivers

Near term priority on treatments for atopic dermatitis (AD), asthma and chronic obstructive pulmonary disease (COPD)

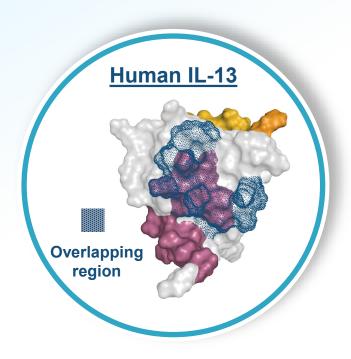
People living with these diseases deserve the best possible treatment

Significant unmet need continues

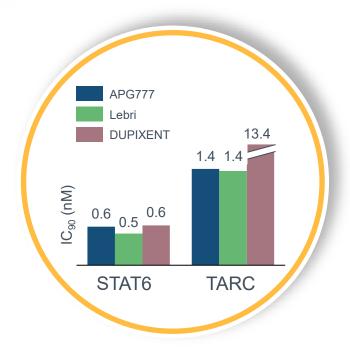
1Q24 Update reflects significant progress

APG777

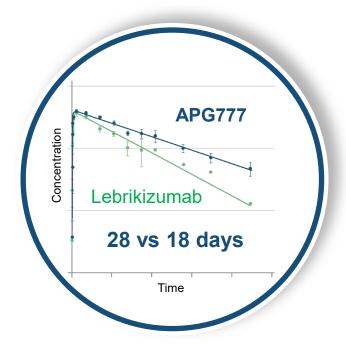
- Phase 1 initial data has exceeded all trial objectives
- Phase 2 in AD anticipated to start in 1H 2024 (ahead of schedule)
- Planned, integrated Phase 2 in AD combines Phase 2a and Phase 2b elements with potential for significant timeline acceleration (topline data from Part A remains 2H 2025)
- Enhanced 180 mg/mL formulation enables 44% higher dose vs lebrikizumab in the same volume


APG808

- Expect to initiate Phase 1 in healthy volunteers in 1H'24 (ahead of schedule)
- Phase 1 interim data accelerated to 2H 2024 (from 2025)



APG777 leverages lebrikizumab's mechanism to deliver a potentially best-in-class, pipeline in a product antibody



APG777's epitope on IL-13 overlaps with lebrikizumab's and leverages proven MoA and biology

APG777 is as potent as lebrikizumab and DUPIXENT in key preclinical assays

APG777 NHP half-life is significantly longer than lebrikizumab

APG777 Phase 1 initial data has exceeded all trial objectives

Establish safety & PK profile

Well-tolerated with at least 33-day half-life

Half life of ~75 days

- Doses up to 1200mg tested and welltolerated
- Initial multiple-dose data consistent with PK & safety profile from SAD cohorts

Set Ph2 induction regimen

Achieve at least equiv. exposures to lebrikizumab with same or fewer injections

- Regimen modeled to exceed lebrikizumab exposure by ~30-40% with potential for improved clinical responses (e.g. EASI-75, EASI-90, IGA 0/1)
- ~50% fewer injections than lebrikizumab in induction (6 vs 11)

Set Ph2 maintenance regimens

Equal lebrikizumab exposure with every 2month or longer dosing¹

• 3- or 6- month maintenance dosing enabled with modeled exposures similar to or greater than lebrikizumab Supplemental

Demonstrate effect on biomarkers pSTAT6 or TARC

Extended PD effect on both pSTAT6 and TARC for ~3 months with follow-up ongoing

Exceeded

Exceeded

APG777 Phase 1 in Healthy Volunteers

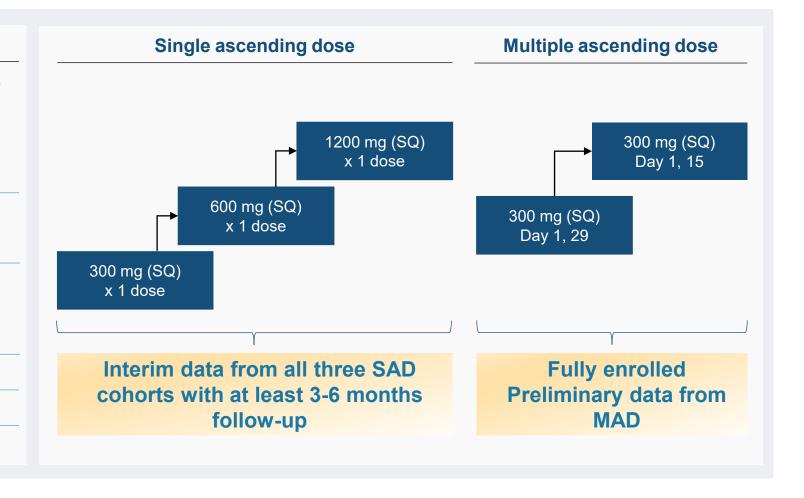
APG777 interim data from ongoing Phase 1 trial in healthy volunteers

Trial design elements

Double-blind, placebo-controlled, first-inhuman trial

Single ascending dose component with a nested multiple ascending dose component

N = 40


8 per cohort (6:2 active:placebo)

Key inclusion criteria: healthy adult participants

Primary endpoint: safety

Secondary endpoints: PK, ADA

Exploratory biomarkers: pSTAT6, TARC

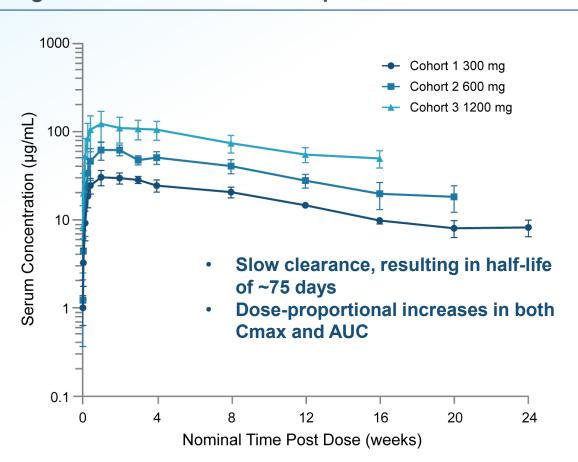
Baseline characteristics are in line with our expectations

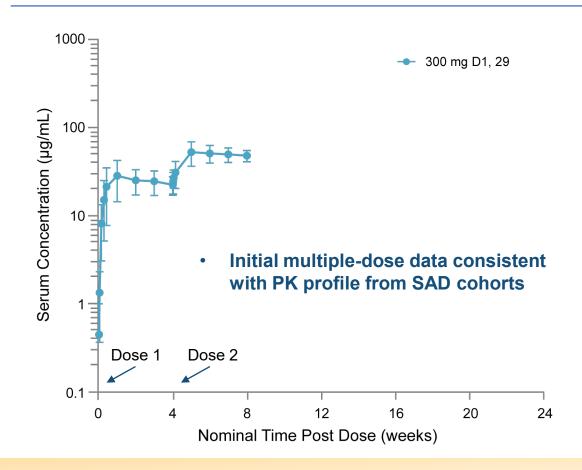
		Single	dose	Multiple dose			
	Placebo N=6	Cohort 1 300 mg N=6	Cohort 2 600 mg N=6	Cohort 3 1,200 mg N=6	Placebo N=4	Cohort 1 300 mg at Day 1, 300 mg at Day 29 N=6	Cohort 2 300 mg at Day 1, 300 mg at Day 15 N=6
Age (yrs), mean (SD)	41.3 (16.2)	30.2 (12.2)	40.2 (18.4)	29.7 (4.6)	42.0 (12.1)	42.7 (13.9)	40.2 (13.8)
Female	100%	66.7%	83.3%	33.3%	100%	50.0%	50.0%
Caucasian	100%	33.3%	83.3%	100%	75.0%	100%	33.3%
Weight (kg), mean (SD)	72.5 (12.6)	74.3 (14.6)	78.8 (14.0)	77.2 (16.2)	62.3 (9.5)	80.5 (8.9)	66.7 (12.9)

Demographics were well balanced across cohorts

APG777 was well-tolerated with a favorable safety profile

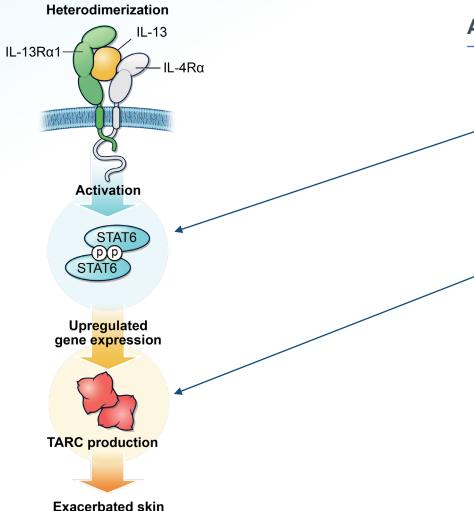
	Single dose					Multiple dose	Overall trial		
N (%)	Placebo N=6	Cohort 1 300 mg N=6	Cohort 2 600 mg N=6	Cohort 3 1,200 mg N=6	Placebo N=4	Cohort 1 300 mg at Day 1, 300 mg at Day 29 N=6	Cohort 2 300 mg at Day 1, 300 mg at Day 15 N=6	APG777 N=30	Placebo N=10
Participants with at least one TEAE	5 (83.3%)	4 (66.7%)	5 (83.3%)	2 (33.3%)	2 (50.0%)	5 (83.3%)	1 (16.7%)	17 (56.7%)	7 (70.0%)
Participants with at least one TE-SAE	0	0	0	0	0	0	0	0	
Participants with at least one drug-related AE	3 (50.0%)	0	1 (16.7%)	1 (16.7%)	0	1 (16.7%)	0	3 (10.0%)	3 (30.0%)
Participants with at least one ≥Grade 3 TEAE	0	0	0	0	0	0	0	0	
Participants that discontinued study due to TEAE	0	0	0	0	0	0	0	0	
Participants that decreased dose due to TEAE	0	0	0	0	0	0	0	0	


The safety profile is in line with expectations for therapies targeting the IL-13 pathway


APG777 exhibited a potentially best-in-class PK profile with a half-life of ~75 days

Single-dose concentration-time profile

Multi-dose concentration-time profile



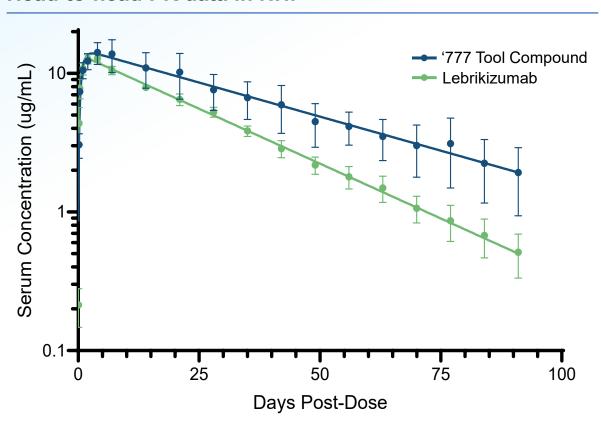
PK demonstrated dose-proportionality and half-life of ~75 days (approximately 3x lebrikizumab)

pSTAT6 and TARC are biomarkers of IL-13 target engagement and AD severity

barrier dysfunction

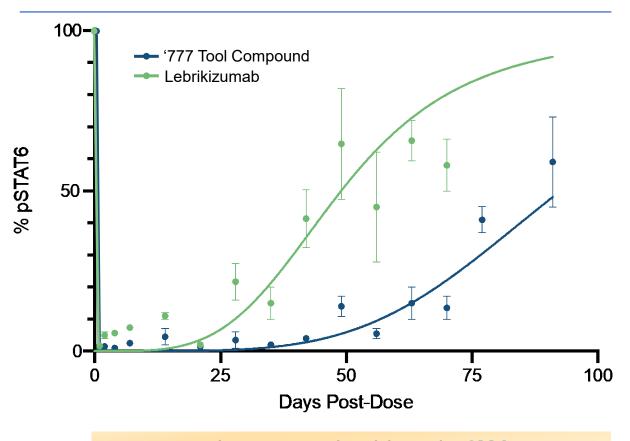
APG777 Phase 1 biomarkers

1. pSTAT6 is one of the earliest markers of IL-13 receptor activation


2. TARC levels are the most strongly correlated to AD severity of any biomarker

Taken together, APG777's reduction of these biomarkers confirms inhibition of IL-13 signaling and allows comparison to other agents

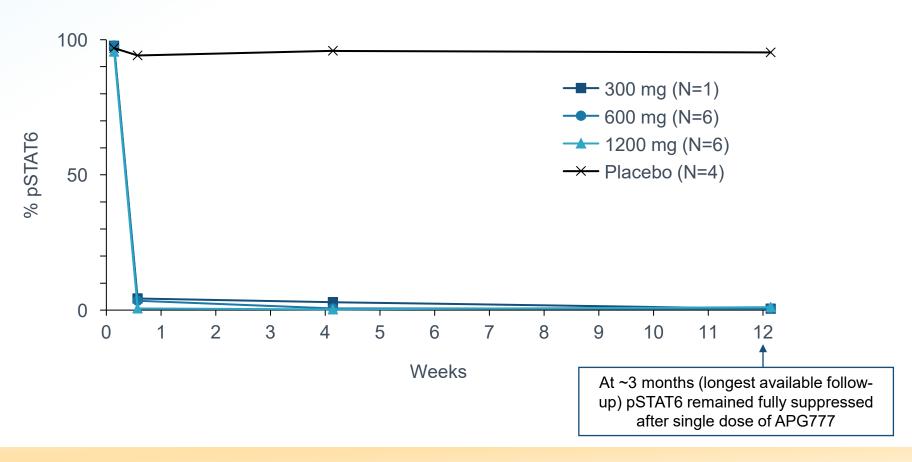
APOGEE


In a head-to-head NHP study, '777 tool compound inhibited pSTAT6 significantly longer than lebrikizumab

Head-to-head PK data in NHP

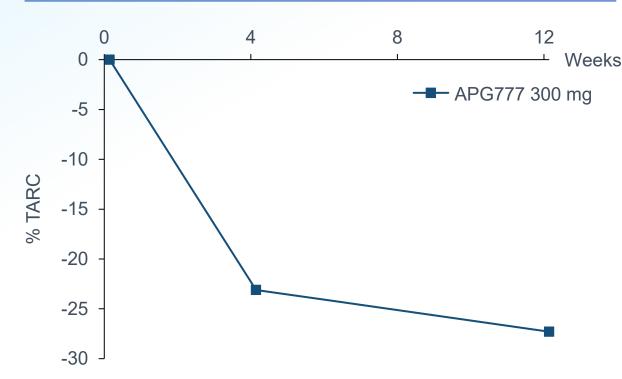
777 tool compound had ~60% longer halflife vs. lebrikizumab

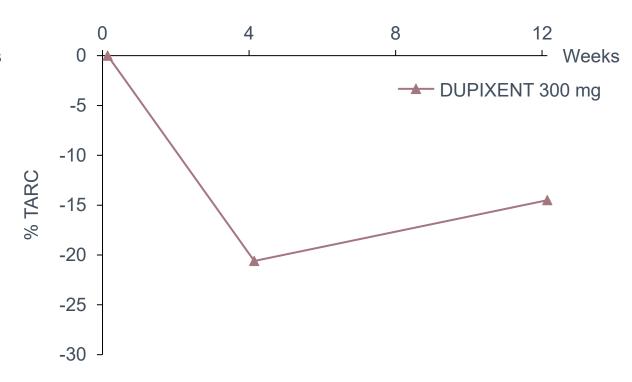
Head-to-head PD data in NHP


777 tool compound achieved ~2X longer pSTAT6 inhibition vs. lebrikizumab¹

Single dose APG777 showed near complete pSTAT6 inhibition for ~3 months (limit of available follow-up)

Median percent change from baseline in pSTAT6


100% pSTAT6 inhibition was demonstrated for approximately 3 months across all doses


Single dose of APG777 led to deep + sustained TARC inhibition for ~3 months (limit of available follow-up)

Median % changes from baseline in TARC inhibition

Median % changes from baseline in TARC inhibition

- 300 mg APG777 showed similar maximum PD marker changes as DUPIXENT
- APG777 sustained TARC inhibition demonstrates the potential for better durability
- All doses tested of APG777 showed deep TARC inhibition for ~3 months (limit of available follow-up)

APG777 positive PK readout is a key risk-reducing milestone that validates program and pipeline

17

Antibody attributes

- Clinically validated IL-13 target
- Epitope overlaps with lebrikizumab epitope
- Equivalent or better potency vs. 1st generation mAbs across relevant preclinical assays

Clinical profile

- Well-tolerated with ability to achieve increased exposures in induction for potential improved clinical responses
- PK data supports every 3- to 6-month maintenance dosing:

~75-day half-life

Near maximal pathway suppression for ~3 months (limit of current follow up)

Apogee intends to initiate a Phase 2 in atopic dermatitis in 1H 2024

APG777 Phase 2 in Atopic Dermatitis

APG777 Phase 2 in atopic dermatitis expected to begin 1H 2024 with 16-week efficacy data in 2H 2025

19

GREATER INDUCTION EXPOSURES

Potential for improved clinical responses (e.g. EASI-75, EASI-90, IGA 0/1) based on ~30-40% greater modeled exposure vs lebrikizumab and ~50% fewer injections

PROLONGED MAINTENANCE DOSING

Every 3- or 6- month maintenance regimens with similar modeled exposure to lebrikizumab Q4W

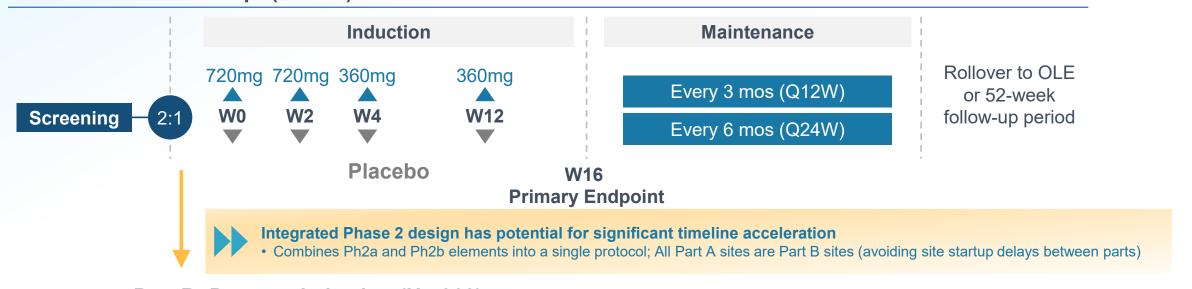
HIGHER DOSES ENABLED

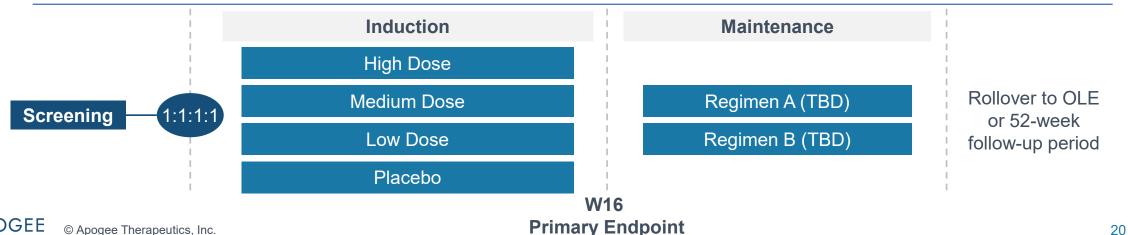
APG777 180 mg/mL formulation enables 44% greater dose than lebrikizumab in the same volume

INTEGRATED DESIGN

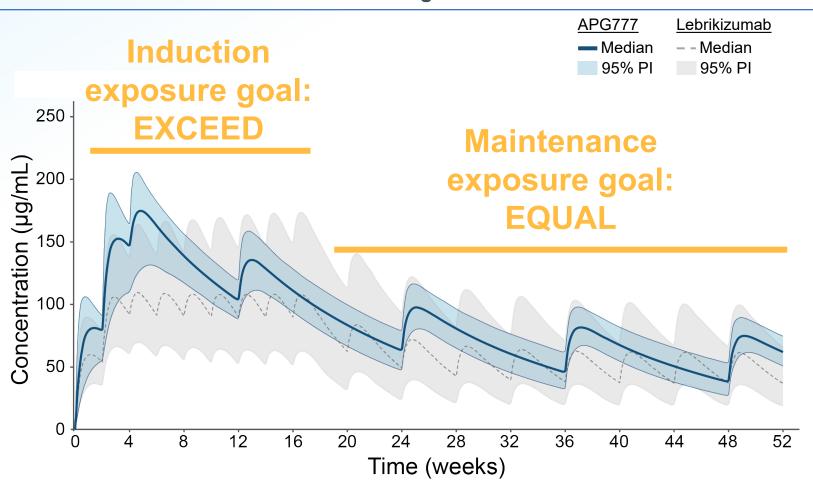
Planned to combine Ph2a and Ph2b elements into a single protocol; significant timeline acceleration over traditional sequenced approach

1H 2024 INITIATION


Topline 16 Week data from Part A anticipated in 2H 2025

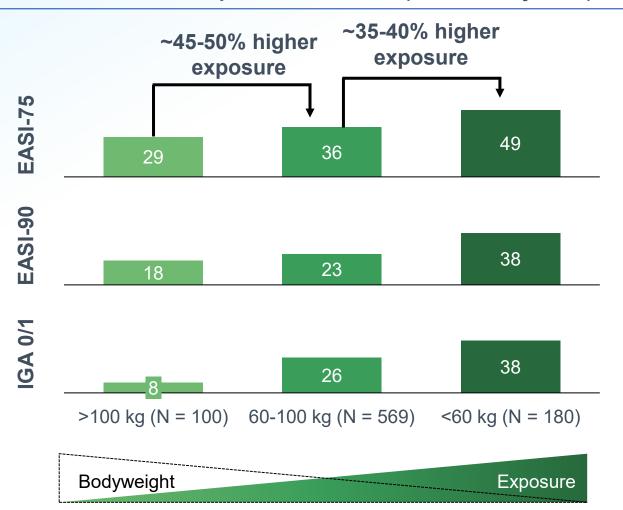

Planned integrated Phase 2 expected to have 16week topline data in 2H'25

Part A: Proof-of-concept (N ~110)


Part B: Dose optimization (N ~360)

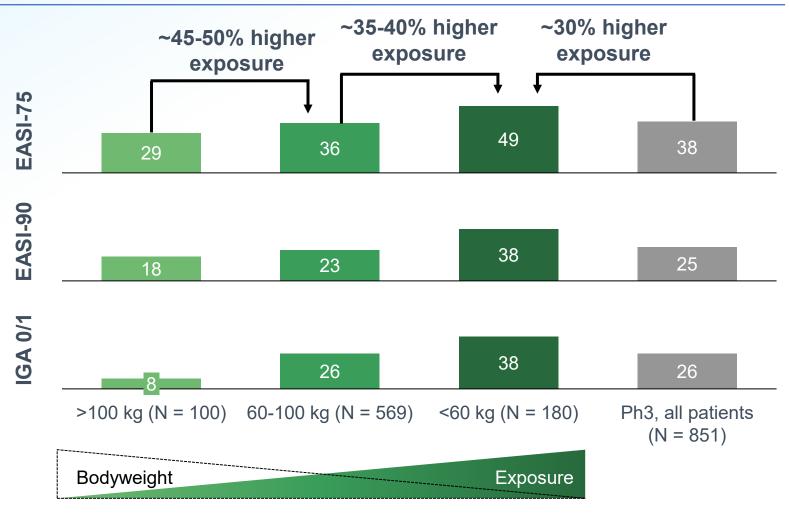
APG777 Phase 2 exposures are designed to exceed lebrikizumab in induction and equal in maintenance

Modeled induction and maintenance dosing for APG777¹ and lebrikizumab


- Lebrikizumab data suggests an exposure-response (E-R) for efficacy in induction that underpins our goal to EXCEED lebrikizumab induction exposures
- There was no E-R observed in maintenance for lebrikizumab; our aim is to EQUAL its exposure in maintenance

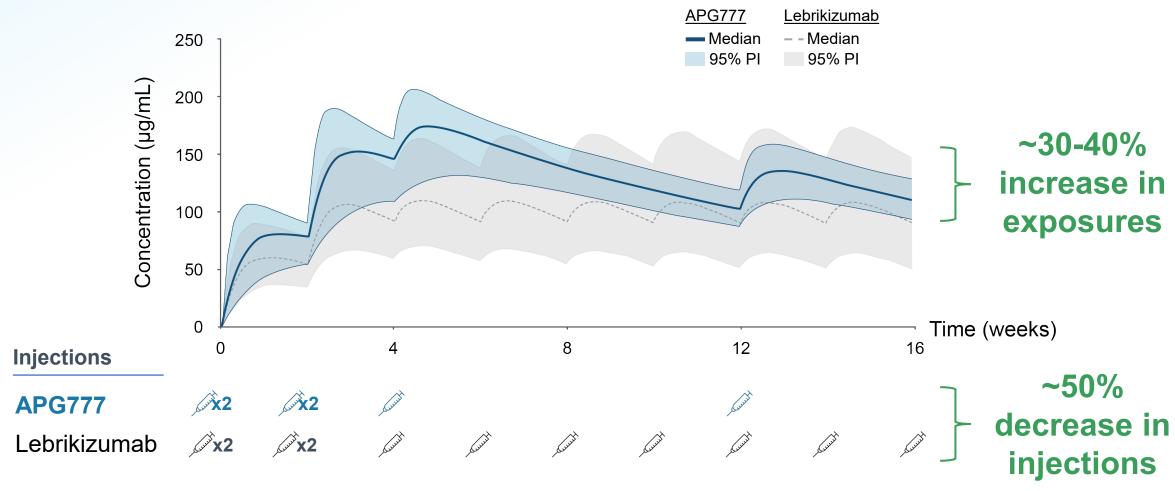
Lebrikizumab Ph3 appears to show an E-R relationship for efficacy in induction that has not been maximized

Lebrikizumab Ph3 response at Week 16 (Placebo-adjusted), %


- Lebrikizumab exposure and induction efficacy are both inversely correlated with body weight
- Relationships suggest an exposure-response for efficacy in induction and support testing higher exposures with APG777
- In lebrikizumab Ph2b and Ph3 there has been no dose-AE or exposure-AE relationship
- APG777 plans to test ~30-40% higher exposures in induction with ~50% fewer injections

Lebrikizumab Ph3 appears to show an E-R relationship for efficacy in induction that has not been maximized

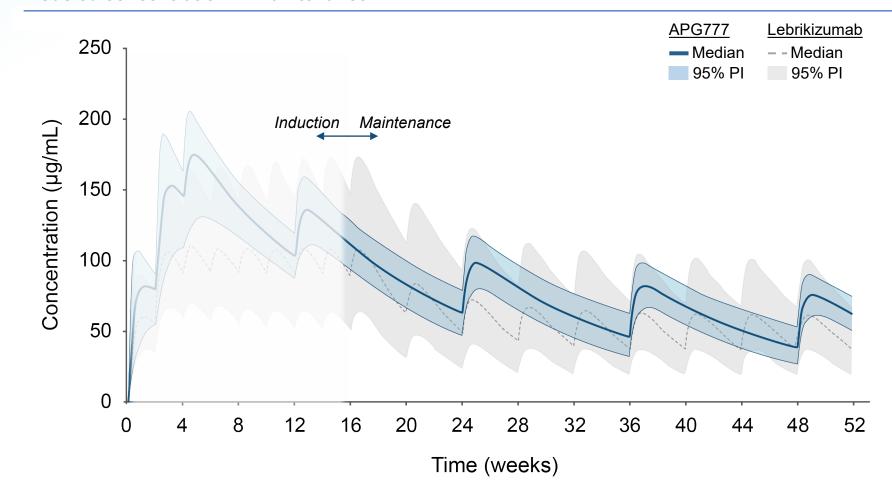
Lebrikizumab Ph3 response at Week 16 (Placebo-adjusted), %


- Lebrikizumab exposure and induction efficacy are both inversely correlated with body weight
- Relationships suggest an exposure-response for efficacy in induction and support testing higher exposures with APG777
- In lebrikizumab Ph2b and Ph3 there has been no dose-AE or exposure-AE relationship
- APG777 plans to test ~30-40% higher exposures in induction with ~50% fewer injections

Modeled Phase 2 induction exposures exceed those of lebrikizumab by ~30-40%

Modeled induction dosing for APG777 and lebrikizumab

Modeled Phase 2 Q3M maintenance exposures <u>equal</u> those of lebrikizumab



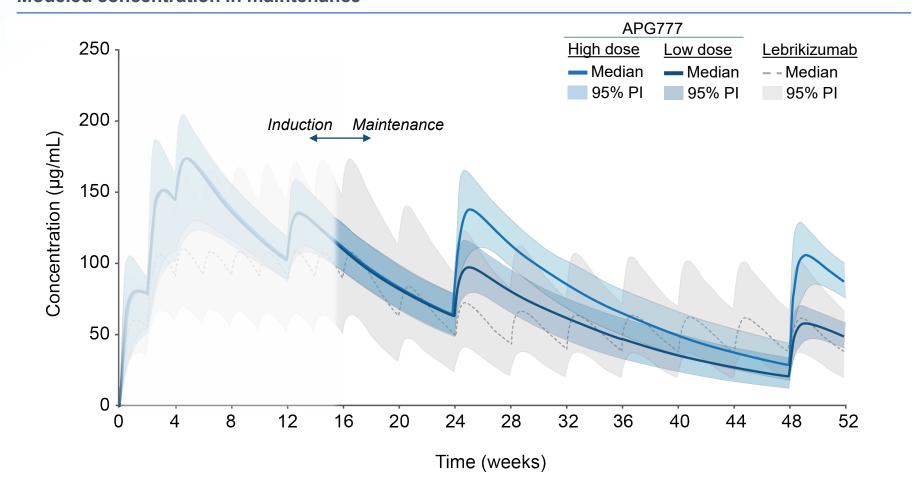
Modeled concentration in maintenance

APG777 Q3M

Aiming for annual maintenance injections:

4 vs 13-26 for lebrikizumab/

Modeled Phase 2 Q6M maintenance exposures <u>equal</u> those of lebrikizumab



Modeled concentration in maintenance

APG777 Q6M

Aiming for annual maintenance injections:

2 vs 13-26 for lebrikizumab/ DUPIXENT

Building a Leading 1&I Company

APG777's best-in-class Phase 1 PK profile shows potential to be a leading product in the expected \$50B+ AD market¹

Potential for improved clinical responses (e.g. EASI-75, EASI-90, IGA 0/1) based on ~30-40% greater modeled induction exposures than lebrikizumab

- Overlapping epitope and equivalent potency as lebrikizumab $(K_D \le 100 \text{ pM})^2$
- ~30% higher exposure seen in lebrikizumab low bodyweight group resulted in at least 10 PPT better efficacy than overall study population across all key endpoints

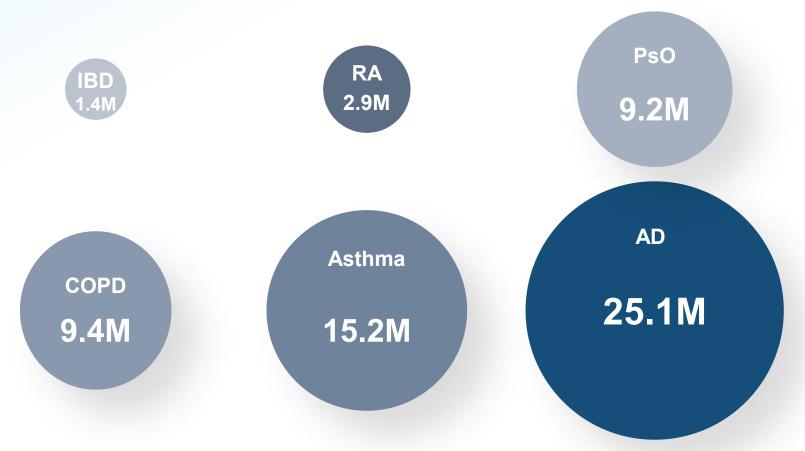
Extended dosing interval addresses clear unmet need

Potential for every 3- or 6-month dosing to improve patient convenience & compliance

Favorable product characteristics and COGS

- As few as 2-4 doses per year in maintenance
- Expected improved formulation, manufacturability and viscosity

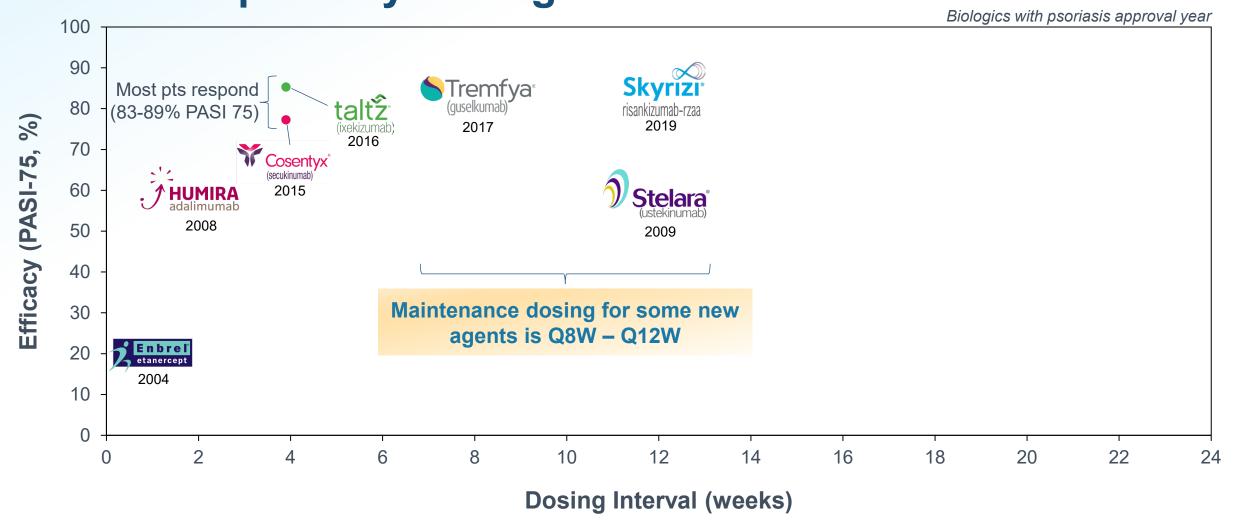
Novel IP into mid-2040s



AD is the largest of the major I&I markets and projected to grow significantly in the next decade

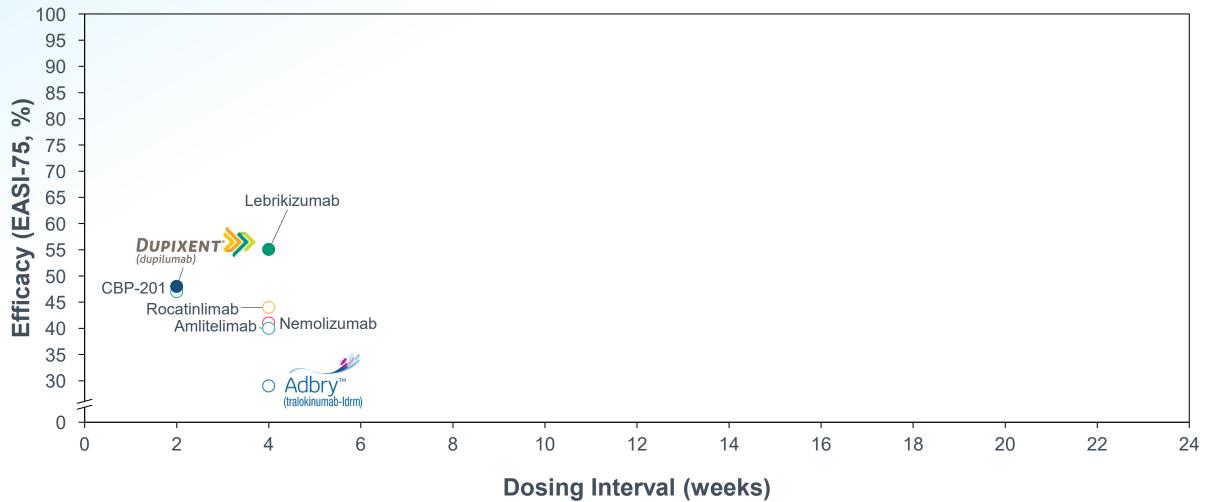
Estimated population size, MM

Moderate or severe in 7 Major Markets¹

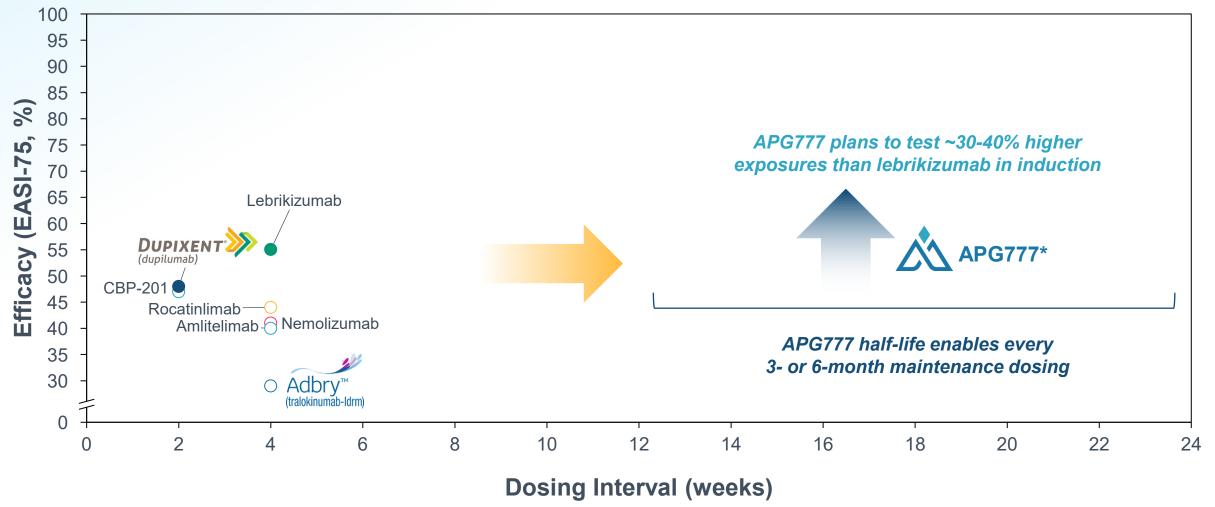


- Psoriasis expected to be a \$30B+ market; atopic dermatitis (AD) represents a larger opportunity based on ~3x larger patient population
- AD biologics penetration is outpacing early years of psoriasis biologics (8% vs 5% at 5 years)
- AD market is projected to grow more than any other I&I market

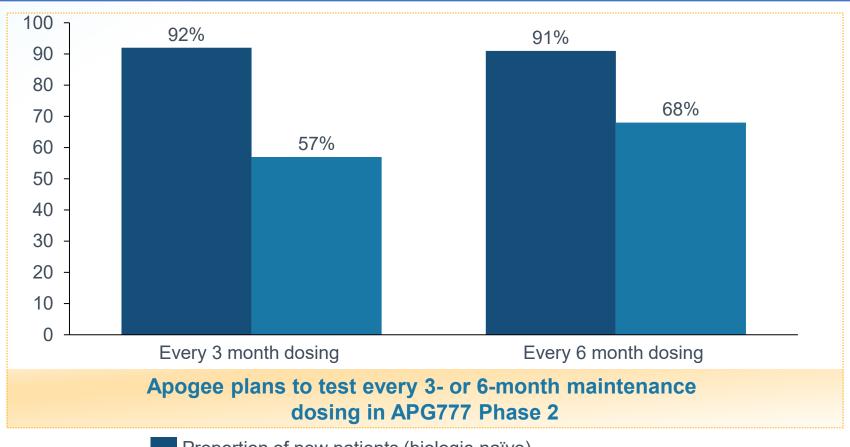
In psoriasis, an analog to AD, Skyrizi has taken the lead with quarterly dosing



There is significant whitespace in the landscape of approved and in-development biologics for AD



Apogee plans to advance APG777 into a Phase 2 trial with 3- or 6-month maintenance dosing



Dermatologists view every 3- or 6-month dosing as highly differentiated

Intent to use a product with APG777 Target Product Profile

(Assuming every 3-, or 6-month maintenance dosing and equivalent efficacy and safety to DUPIXENT)

- Proportion of new patients (biologic-naïve)
- Proportion of switch patients (currently/formerly on a biologic)

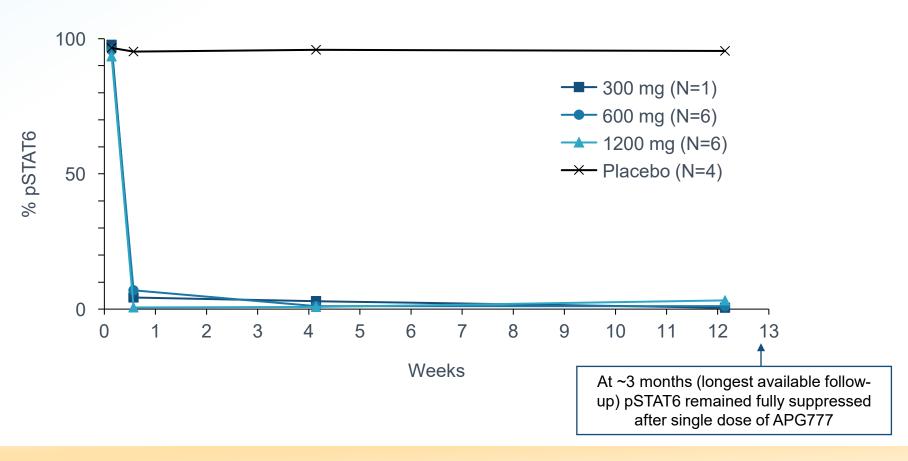
Apogee plans to become a leader in I&I therapeutics

APG777 (IL-13)	● ✓ Phase 1 initiated in HVs ✓ 6-month chronic toxicology completed	✓ Positive Phase 1 PK & safety in HVs 1H: Phase 2 initiation in AD	 2H: 16-week PoC data in AD Phase 2 initiation in asthma Disclose additional indication
APG808 (IL-4Rα)	● ✓ DC nominated	✓ Phase 1 expected to initiate in 1H∠ 2H: Initial Ph1 PK & safety in HVs	1H: PoC data in asthmaPoC trial initiation in COPD
APG990/222 (OX40L ± IL-13)		Candidate nomination	Phase 1 initiation in HVs
	 √ \$345M IPO √ Enhanced team and BOD	● R&D Day	

2023

Q&A Backup

APG777 was well-tolerated with a favorable safety profile (TEAEs ≥5% across all cohorts, all grades)


_											
	Single dose					Overall trial					
	Placebo	Cohort 1 300 mg	Cohort 2 600 mg	Cohort 3 1,200 mg	Placebo	Cohort 1 300 mg at Day 1, 300 mg at Day 29	Cohort 2 300 mg at Day 1, 300 mg at Day 15	APG777	Placebo		
N (%)	N=6	N=6	N=6	N=6	N=4	N=6	N=6	N=30	N=10		
TEAE (≥5% across all cohorts), all	grades			-							
Vascular access site pain*	1 (16.7%)	3 (50.0%)	0	0	0	1 (16.7%)	0	4 (13.3%)	1 (10%)		
Vessel puncture site bruise*	2 (33.3%)	0	0	0	1 (25.0%)	2 (33.3%)	0	2 (6.7%)	3 (30%)		
Headache	0	0	1 (16.7%)	1 (16.7%)	0	2 (33.3%)	0	4 (13.3%)	0 (0%)		
Vascular access site bruising*	1 (16.7%)	1 (16.7%)	1 (16.7%)	0	0	1 (16.7%)	0	3 (10%)	1 (10%)		
Back pain	1 (16.7%)	0	1 (16.7%)	1 (16.7%)	0	0	0	2 (6.7%)	1 (10%)		
Injection site bruising*	1 (16.7%)	0	0	2 (33.3%)	0	0	0	2 (6.7%)	1 (10%)		
Neutrophil count decrease	3 (50.0%)	0	0	0	0	0	0	0	3 (30%)		
Contusion	1 (16.7%)	0	0	0	0	1 (16.7%)	0	1 (3.3%)	1 (10%)		
Cough	0	1 (16.7%)	0	0	0	1 (16.7%)	0	2 (6.7%)	0 (0%)		
Dermatitis contact	1 (16.7%)	0	0	0	1 (25.0%)	0	0	0	2 (20%)		
Diarrhea	0	1 (16.7%)	0	1 (16.7%)	0	0	0	2 (6.7%)	0		
Nausea	0	0	1 (16.7%)	1 (16.7%)	0	0	0	2 (6.7%)	0		
Oropharyngeal pain	0	1 (16.7%)	0	0	0	0	1 (16.7%)	2 (6.7%)	0		
Pain in extremity	1 (16.7%)	0	1 (16.7%)	0	0	0	0	1 (3.3%)	1 (10%)		
Upper respiratory tract infection	1 (16.7%)	0	0	0	0	1 (16.7%)	0	1 (3.3%)	1 (10%)		

Single dose APG777 showed near complete pSTAT6 inhibition for ~3 months (limit of available follow-up)

Mean percent change from baseline in pSTAT6

100% pSTAT6 inhibition was demonstrated for approximately 3 months across all doses

Company Overview

Apogee plans to transform the I&I space

FOCUS

Engineering antibodies with potential bestin-class profiles in largest I&I indications with highly differentiated dosing

APPROACH

Technology approach **proven** to create antibodies with significantly extended half**life** and other optimized properties

从 EXPANSION

Pipeline-in-a-product potential via indication expansion and combination approaches

从 PIPELINE

Four programs leveraging well-established mechanisms and addressing I&I indications with multi-billion-dollar potential

Program / Target	Discovery	Preclinical	Phase 1	Phase 2	Phase 3
APG777 IL-13 Same MOA as lebrikizumab	Atopic Dermatitis		1H 2024: Phase 2 trial initiation ¹ 2H 2025: 16-week proof-of-concept data in AD patients		
		Asthma		2025: Phase 2 trial	initiation ¹
APG808 IL-4Rα Same MOA as DUPIXENT	COPD		1H 2024: Phase 1 initiation in HV 2H 2024: Initial Phase 1 PK and safety in HV 2025: Proof-of-concept trial initiation in COPD		
APG990 OX40L Same MOA as amlitelimab	Atopic Dermatitis	2024: Candidate nomination 2025: Phase 1 initiation in HV			
APG222 Combination IL-13 and OX40L	Atopic Dermatitis				

Apogee mAbs are engineered for best-in-class properties, including half-life extension

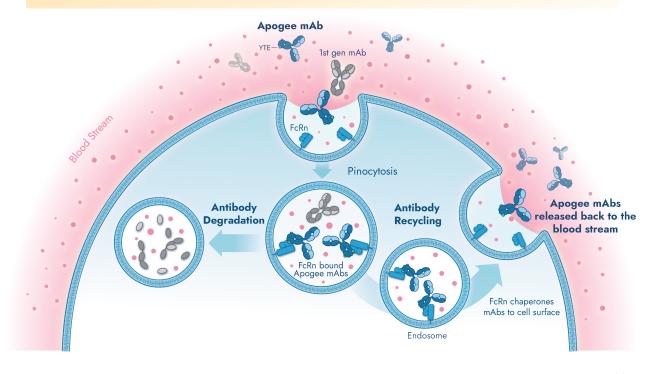
Based on clinically-validated epitopes with performance across five properties:

Backbone

Potency

PK

Stability

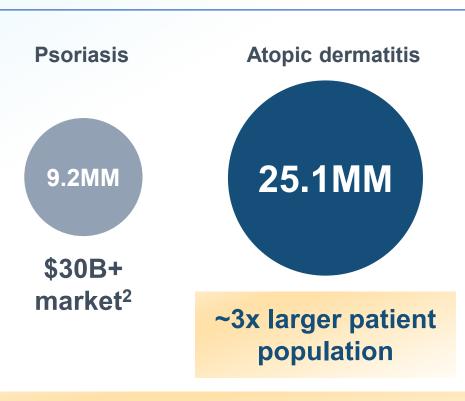


Viscosity

- Designed to maximize antibody recycling
- Drug exists at higher levels for longer effect

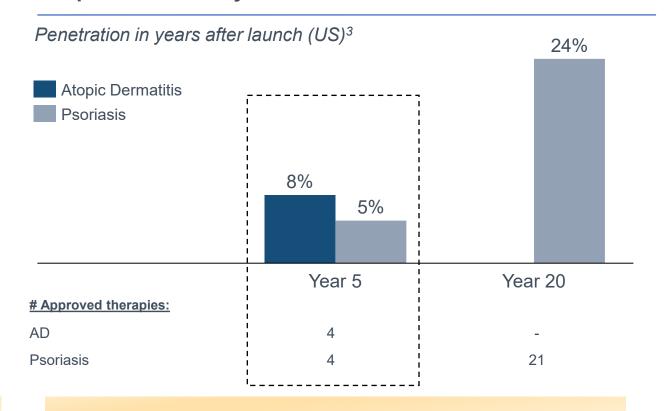
Potential for PK that:

- Optimizes exposures
- Decreases variability
- Increases half-life



APG777

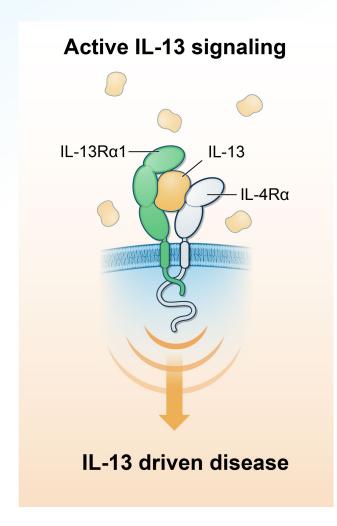
AD represents a larger opportunity than psoriasis; AD biologics penetration mirrors early years of psoriasis

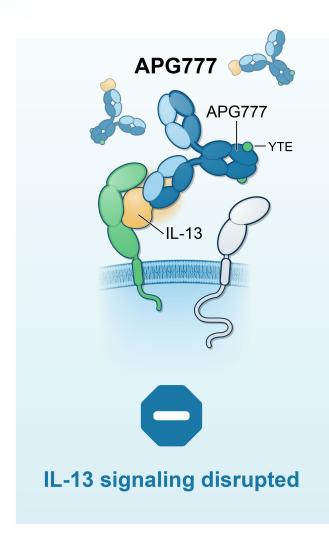


Population size, MM Moderate or severe in 7 Major Markets¹, 2020

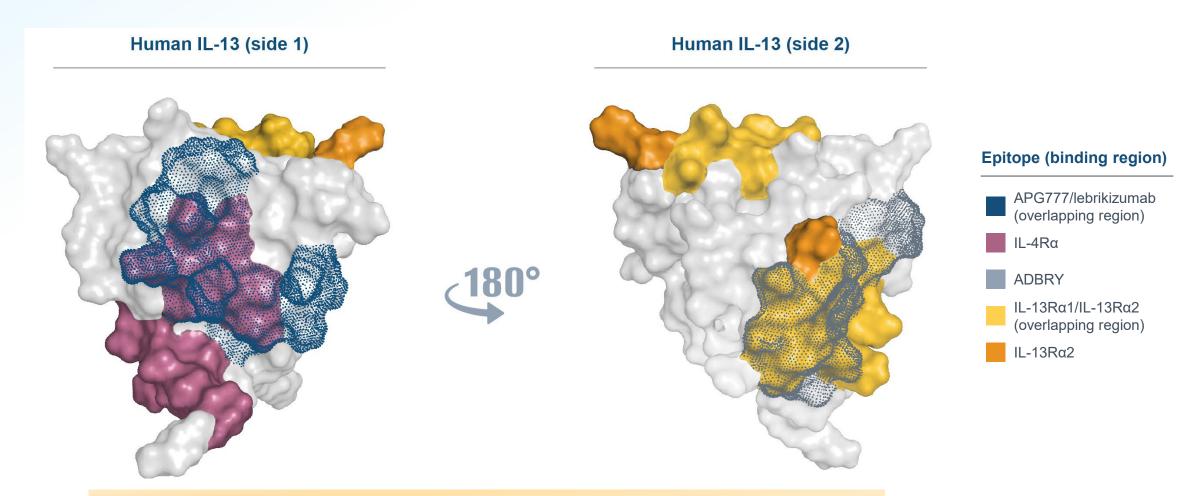
Psoriasis expected to be a \$30B+ market; atopic dermatitis (AD) represents a larger opportunity

Penetration of approved systemic therapy in AD expected to ramp $8\% \rightarrow 25\%$ + by 2032



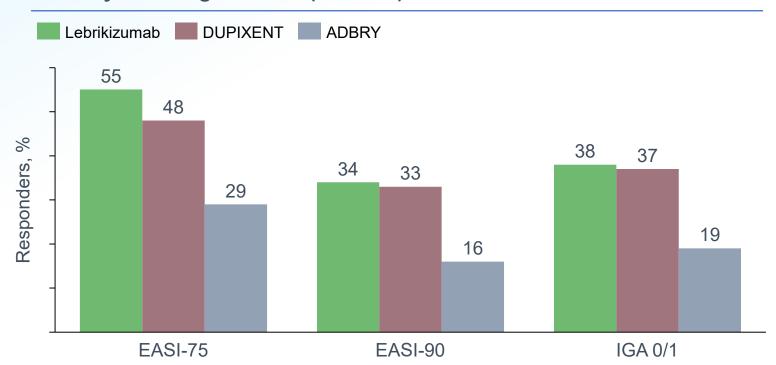

More convenient dosing could potentially expand AD biologics' penetration beyond projected 25%+

APG777 is designed to disrupt Th2 signaling by preventing formation of IL-13Rα1 / IL-4Rα heterodimer



- IL-13 signaling begins with binding of IL-13 to IL-13Rα1
- This forms an inactive complex that then binds to IL-4Rα to create a complete, active heterodimer
- Active IL-13Rα1 / IL-4Rα
 heterodimer sets off a signaling
 cascade that leads to:
 - Skin barrier defects
 - Immune cell recruitment
 - Tissue inflammation
 - Lichenification (skin thickening)
 - Pruritis (skin itching)

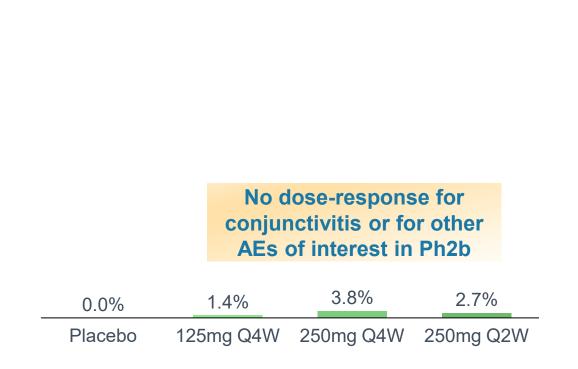
APG777's epitope overlaps with lebrikizumab, differentiating from other approaches to target IL-13


APG777's mechanism of action disrupts Th2 signaling by blocking IL-4R α binding and subsequent formation of the IL-13R α / IL-4R α heterodimer

Lebrikizumab and DUPIXENT have similar efficacy across key AD endpoints

Efficacy of biologics in AD (week 16)

Targeting the key pathogenic step in AD, like lebrikizumab and DUPIXENT, has consistently resulted in high efficacy

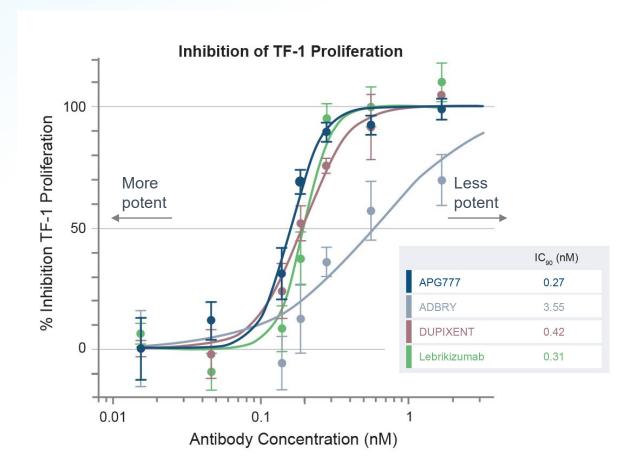

- Lebrikizumab and DUPIXENT show consistently high results across all important efficacy parameters
 - Mechanistically, both target the key pathogenic step in AD, the heterodimerization of IL-4Rα and IL-13R1, which may explain the similar efficacy observed
- However, both are dosed every other week⁴, a burden for patients
- Lebrikizumab showed, at minimum, equivalent maintenance efficacy for both Q2W and Q4W dosing, a main differentiator from DUPIXENT

Lebrikizumab showed greater efficacy with higher doses in Ph2b with no dose-dependent increases in AE rates

Conjunctivitis rates by dose level in lebrikizumab Ph2b

Response at 16 weeks (placebo-adjusted), % by dose level in lebrikizumab Ph2b

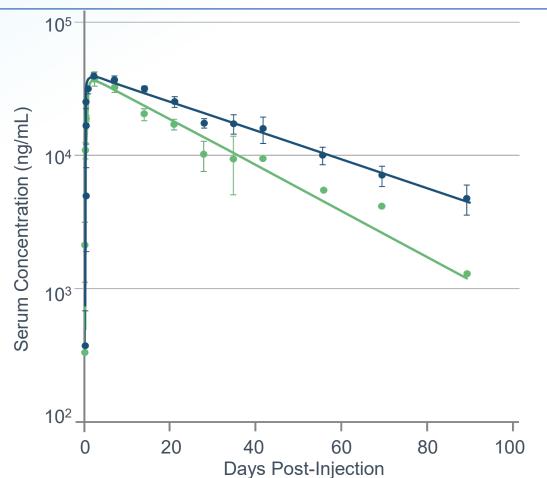
With no plateau in efficacy across doses, a higher dose and/or greater exposures could lead to better efficacy



APG777 is as potent as lebrikizumab and DUPIXENT in key preclinical assays

APG777 vs DUPIXENT, ADBRY, and lebrikizumab on key potency assay

Additional in vitro assays support APG777 potency


Assay	Affinity to human IL-13 by SPR	Inhibition of STAT-6 phosphorylation	Inhibition of TARC secretion
Measurement	$K_D(pM)$	IC ₉₀ (nM)	IC ₉₀ (nM)
APG777	78	0.56	1.40
ADBRY	116	1.34	27.96
DUPIXENT		0.58	13.41
Lebrikizumab	131	0.46	1.37

APG777 NHP half-life is significantly longer than lebrikizumab

NHP PK, SQ administration

APG777 has advantages over lebrikizumab in our NHP head-to-head studies

NHP average half-life¹

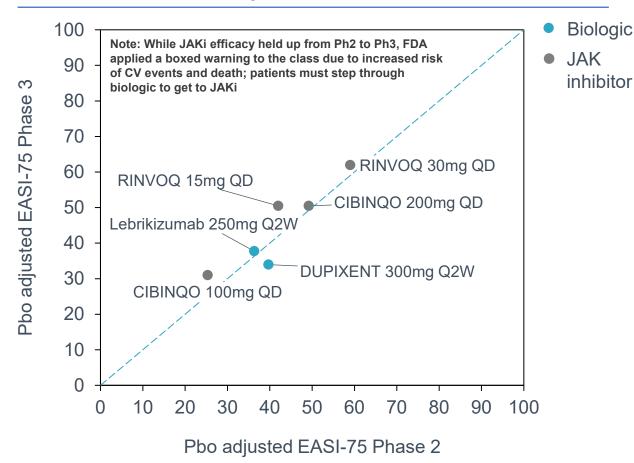
APG777: 28 days

Lebrikizumab: 18 days

- APG777 shows extended half-life in NHPs
- APG777 had decreased PK variability with potential for greater consistency in response

APG777 can potentially achieve every 2or 3-month maintenance dosing vs Q4W for lebrikizumab and Q2W for DUPIXENT

Strong historical correlation between Phase 2 and 3 data makes APG777 16-week AD data a key catalyst



Phase 2 16-week data in atopic dermatitis planned to readout in 2H 2025

Phase 2 objectives

- 2H 2025 POC readout: % change from baseline in EASI at Week 16 powered >90% to detect effect
 - Induction regimen that exceeds lebrikizumab exposures by ~30%
- Maintenance POC: Study every 3- or every 6month dosing in initial POC study to demonstrate the full potential of APG777 to reduce injection burden of patients
- Phase 2b dose optimization: examine range of regimens with exposures at, below, and above lebrikizumab

Strong correlation between Phase 2 and 3 results in AD for validated endpoints EASI-75 and IGA 0/1

APG777 could substantially decrease annual maintenance injections for patients

APG777*

2-4

INJECTIONS

ONE INJECTION EVERY 3- or 6- MONTHS

Lebrikizumab

13

INJECTIONS

ONE INJECTION EVERY 4 WEEKS

DUPIXENT

26

INJECTIONS

ONE INJECTION EVERY OTHER WEEK

Scaring A

Additional injection relative to Q6M APG777

APG808

APG808 targets the same mechanism as DUPIXENT, which has been validated in COPD

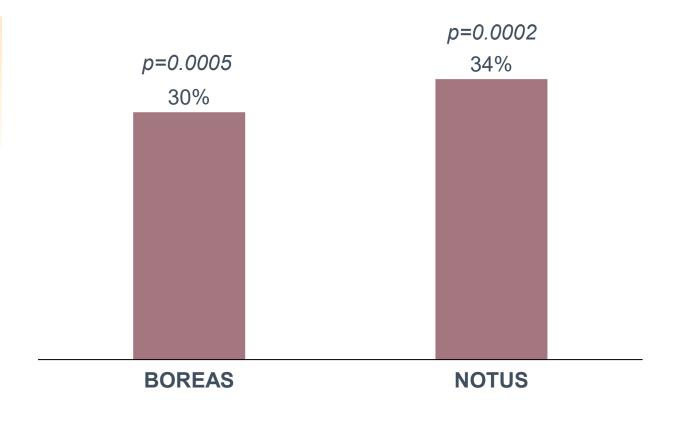
COPD represents area of high unmet and a promising opportunity given recent positive DUPIXENT data

10%

of the global population >40 yrs

3rd

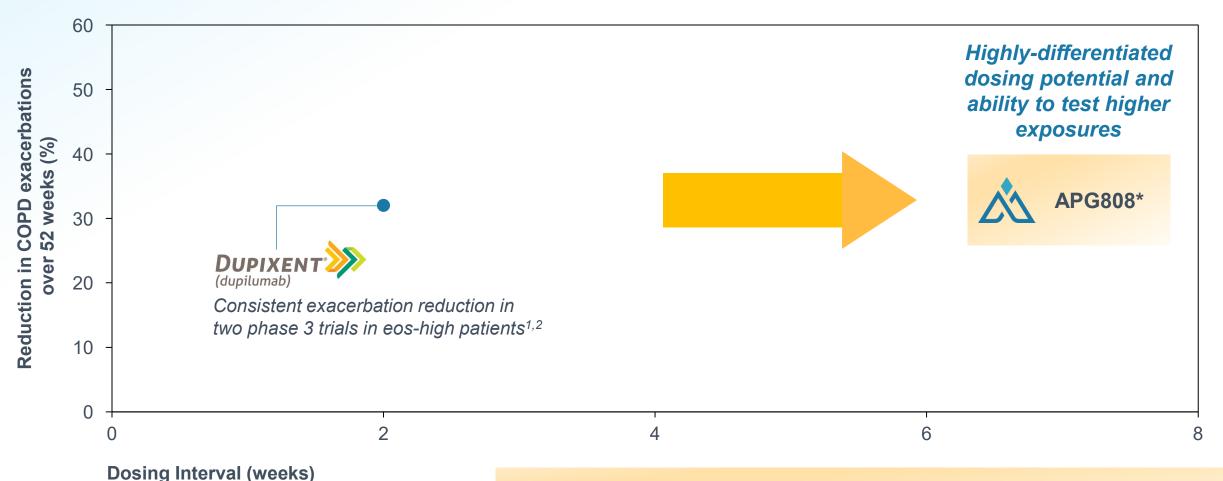
Leading cause of death in the US in 2019


150K+

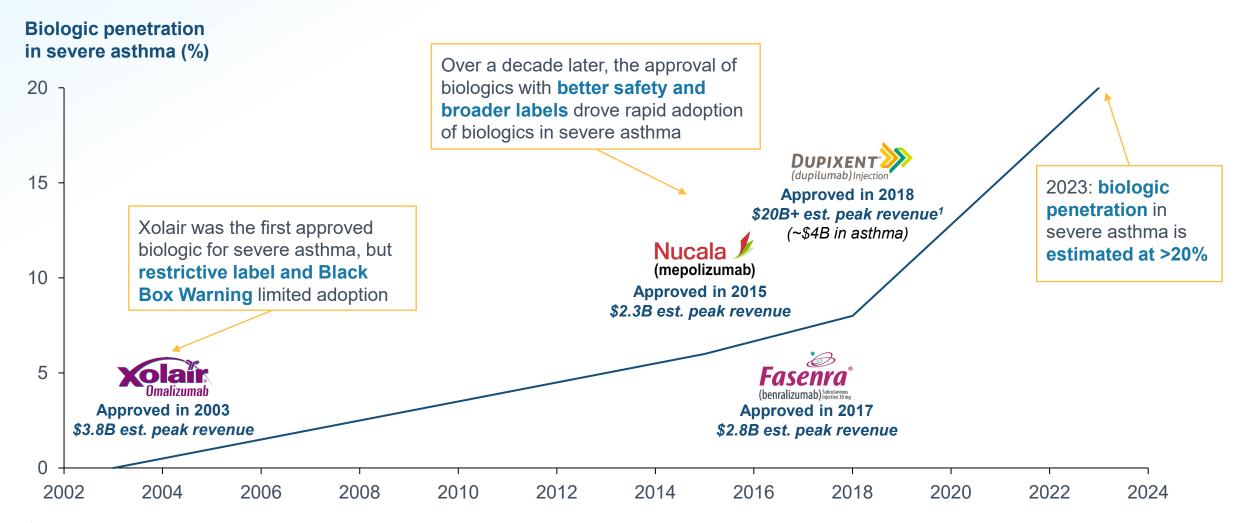
People die each year in the US

No biologic therapies are approved for COPD, but DUPIXENT demonstrated promise in two Phase 3s:

- Significant, clinically meaningful reduction in moderate or severe acute COPD exacerbations
- Improved lung function from baseline at 12
 weeks compared to placebo with separation from
 placebo as early as 2 weeks


DUPIXENT produced a significant and clinically meaningful reduction in exacerbations in two Phase 3 studies

Treatments for moderate-severe COPD are limited



Other than DUPIXENT, no other late-stage biologic for the treatment of COPD has achieved its primary endpoint, leaving a vast unmet need for dosing beyond Q2W

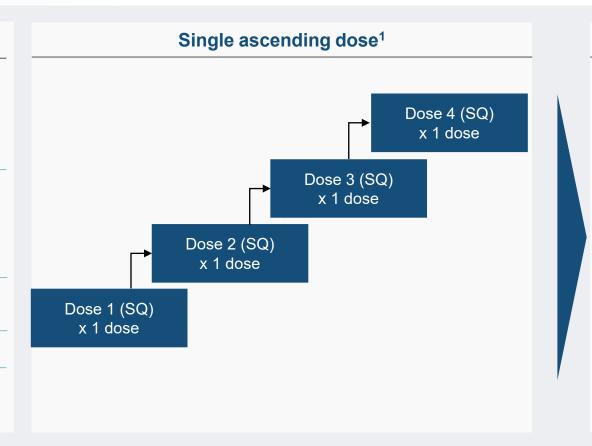
Asthma, an analog for COPD, shows how biologics can be rapidly adopted when they address unmet needs

APG808 Phase 1 expected to initiate in 1H 2024 (ahead of schedule) with planned readout in 2H 2024

Trial design elements

Double-blind, placebo-controlled, first-inhuman trial

Single ascending dose in healthy participants


 $N \sim 32$

8 per cohort (6:2 active:placebo)

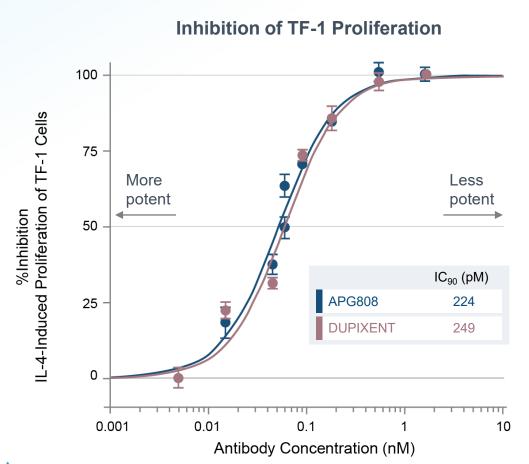
Key inclusion criteria: healthy adult participants

Primary endpoint: safety

Secondary endpoints: PK, ADA

Dose or regimen TBD

Asthma cohort²

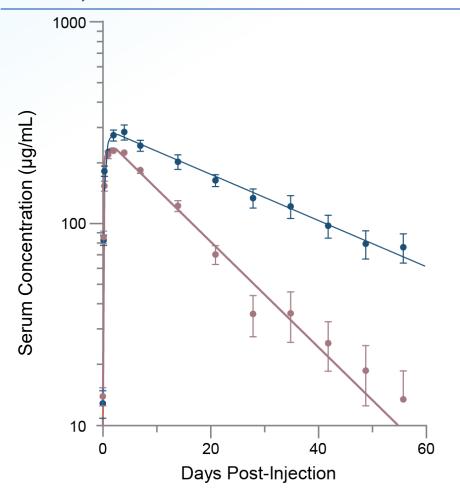

2H 2024: Present APG808 safety and PK, including potentially extended half-life, optimized exposures, and low variability

APG808 is as potent as DUPIXENT in key preclinical assays

APG808 vs DUPIXENT on key potency assay

Additional in vitro assays support APG808 potency

Assay	Affinity to human IL- 4Rα ^{1,2}	Inhibition of STAT-6 phosphorylation	Inhibition of TARC secretion
Measurement	K _D (pM)	IC ₉₀ (nM)	IC ₉₀ (nM)
APG808	0.4	1.11	1.25
DUPIXENT	12	1.93	1.67


Additional preclinical assays demonstrate APG808 and DUPIXENT have an overlapping binding site on IL-4R α

APG808 NHP half-life is significantly longer than DUPIXENT

NHP PK, SQ administration

APG808 has advantages over DUPIXENT in our NHP head-to-head studies

NHP average half-life¹

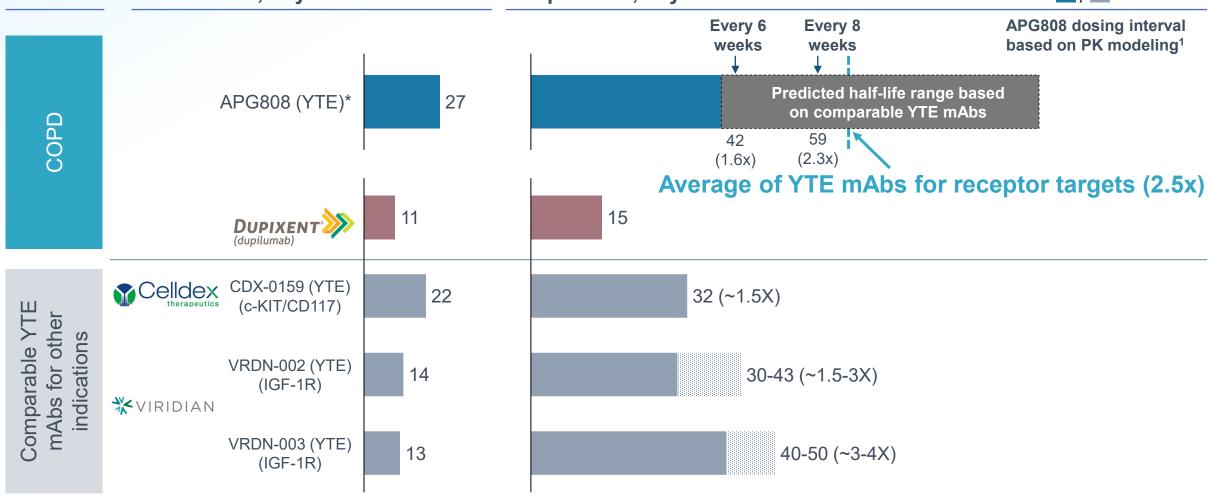
APG808: ~26 days

DUPIXENT: ~12 days

APG808 showed extended half-life in NHPs

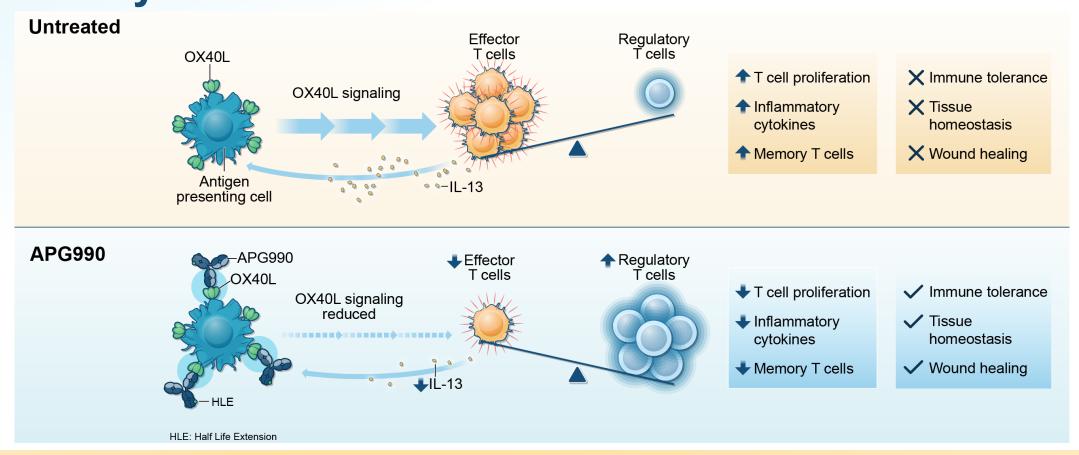
 APG808 also showed decreased variability on PK and potential for greater consistency in response

APG808 can potentially achieve 6- or 8-week dosing vs Q2W for DUPIXENT


Indication

APG808 NHP half-life suggests potential for significant improvement over DUPIXENT in humans

APG808 predicted human half-life vs. observed comparators, days

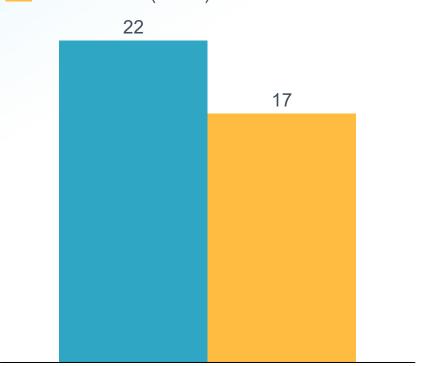


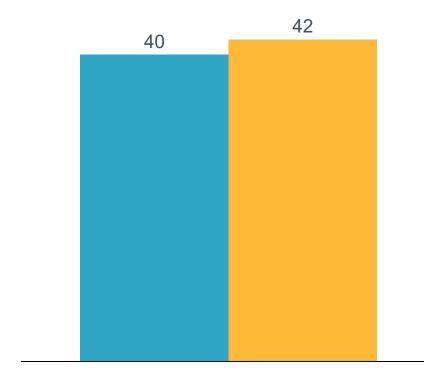
APG990/APG222

APG990 blocks OX40L and potentially rebalances the immune system

OX40L blockade targets Th2, Th17, and Th22 pathways, which have been implicated in numerous I&I conditions

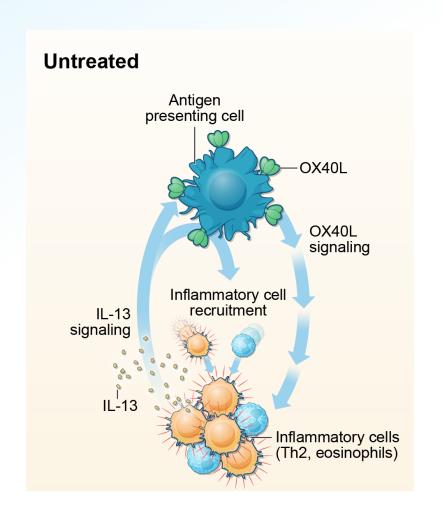
Upcoming clinical trial readouts could provide PoC for OX40L beyond AD including asthma, hidradenitis suppurativa, alopecia areata, celiac disease, and systemic sclerosis

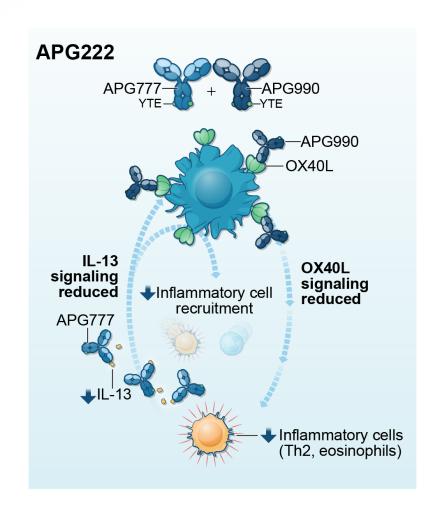

OX40L and OX40 inhibition have shown similar efficacy, but OX40L has a clear advantage on safety



Rocatinlimab (OX40)²

EASI-75 at Week 16




- In Phase 2b,
 rocatinlimab (OX40) was
 associated with pyrexia
 (17% of patients) and
 chills (11% of patients)
- In contrast, no pyrexia³
 or chills for amlitelimab
 (OX40L) in Phase 2b

APG222 combines two validated mechanisms and may enhance benefit in AD and other I&I indications

- OX40L treatment reduces circulating IL-13 levels supporting the potential for synergy with IL-13 blocker
- Combination potentially enables wider subset of patients to achieve deeper clinical responses and durable remission in AD and other I&I indications

Given strong mechanistic rationale, APG222 program will explore combination potential

Corporate

Experienced team with proven history of clinical development and commercial execution

Michael Henderson, MD Chief Executive Officer. Director

Carl Dambkowski, MD Chief Medical Officer

Jane Pritchett Henderson Chief Financial Officer

Rebecca Dabora, PhD Chief Technical Officer

Matt Batters, JD General Counsel

Wendy Aspden-Curran SVP of Clinical Operations

Drew Badger, PhD SVP of Regulatory Affairs & Toxicology

Dan Mulreany SVP of Business Development & Strategy

Kristine Nograles, MD, MSc SVP of Clinical Development

Board of Directors with industry-leading development, commercial and management expertise

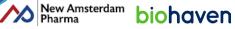
Mark McKenna Chairman

Michael Henderson, MD CEO, Apogee Therapeutics

Jennifer Fox CFO & CBO, Zenas BioPharma

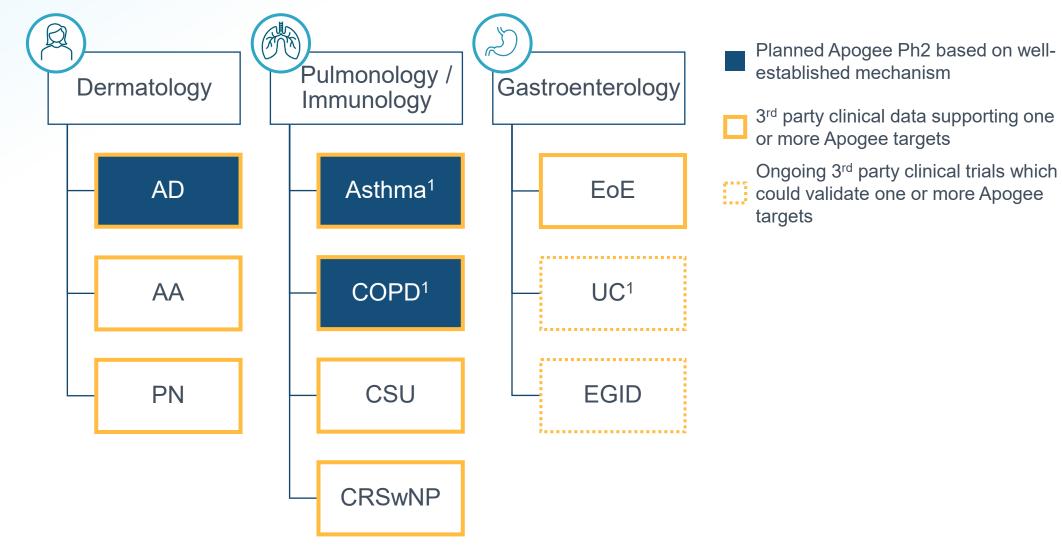
Andrew Gottesdiener, MD Venrock

Peter Harwin Managing Member, Fairmount


BAUSCH Health Johnson Johnson

BJ Jones CCO, NewAmsterdam Pharma

Tomas Kiselak Managing Member, Fairmount


Nimish Shah Venrock

Our programs have broad potential to disrupt the I&I space

